EXEMPLARY WORKSITE LEARNING PROGRAMS

Connecting the Classroom to the Workplace

Featuring winners of the 1999 Exemplary Worksite Learning Award, sponsored by CATERPILLAR
The following people generously contributed their programs’ narratives for the creation of this report:

Jennie Royer and other members of the Stark County Tech Prep Consortium

Carol Leach and other members of the P.E.R.F.E.C.T. staff

Janet Paskins, Pasco-Hernando Community College

Editors:

Teresa Rollins is editor of the National Tech Prep Network newsletter and coordinator of the Exemplary Worksite Learning Award.

Mark Whitney is manager of the publications services department at CORD.

Kay Liston is an editor at CORD.

David Bond is the director of the National Tech Prep Network.

Copyright 2001 CORD
Waco, Texas

ISBN 1-57837-279-8
CONTENTS

Foreword

Introduction

Stark County Tech Prep Consortium’s
Medical Tech Prep

Introduction

Building the Solution

Start-up Committees and Advisory Groups

Funding

Curriculum Development

The Program

Articulation Agreements

Teacher/Instructor/Staff Preparation

Business Involvement

Maintaining an Exemplary Program

Marketing the Program

Program Evaluation

Legal Issues

Conclusion

Manufacturing Skilled Trades: Industrial Electrician, Industrial Maintenance Mechanic, Toolmaker

Introduction

Building the Solution

The Program

Maintaining an Exemplary Program

Conclusion

Program Awards

Outlook
FOREWORD

GE Harris Harmon officially started on its Tech Prep/partnership “mission” in 1994. Our intent was to work with schools to build a competitive workforce by becoming a laboratory for students. Over the last six years, we have worked with over 7000 students and educators. These encounters have lasted anywhere from five minutes to five years.

My role in all of this has been to “make it happen.” As an experienced teacher, I knew that the principles were sound, but the challenge was whether or not we could truly make educators and employers comfortable with working together. As I read the EWSLA applications for 2000, I was thrilled to see how far we, businesses and schools, had come over the years in meeting this objective.

Bjorn Olsson, former President of Harmon Industries, Inc., spoke at the Employer to Employer Conference in Dallas, Texas, in 1998, and he shared the fact that at one time a company expected to hire people and spend one to two years teaching them the trade. He emphasized that our economy no longer offers us that luxury. New hires are replacing recent retirees or entering technical fields that did not exist previously. They are walking into companies that require them to contribute on the first day. This can happen only if students are given workplace experiences. Students greatly benefit from the opportunity to gain the latest skill using the most current technology found in the workplace. We can help these students to fulfill our needs if we allow them to work beside us as they gain this experience.

Workplace experiences have given students greater respect for their education and the contribution they will make in the future. The students have learned technical skills on state-of-the-art equipment from talented employees. They have also learned problem-solving skills and people skills as they interact within a
diverse work setting. Our employees have grown professionally and personally along with the students. Many of them have received courage from the students and returned to school for additional training.

We opened the door to become a laboratory. The employees opened their hearts as well. They share their love of the industry with students who really want to learn. Students are more confident and more respectful of their skill, our industry, adults, and the world as a whole.

What began as a experiment is evolving into “good business.” Whether training our current workforce or preparing our future workforce, the most effective way for us to do it is to do it together.

Neva Allen
Manager of Internal Training
GE Harris Harmon
1998–2000 NTPN Advisory Board Member
INTRODUCTION

This is the fourth report published by the National Tech Prep Network providing information on successful programs in which students learn by participating in hands-on classroom activities and by taking part in worksite experiences. The three featured programs are Exemplary Worksite Learning Award (EWSLA)\(^1\) winners. The EWSLA was established by CORD and NTPN in 1994 to encourage Tech Prep/School-to-Work consortia to integrate meaningful worksite experiences into their curricula. Recipients of this award must meet criteria determined by a national committee of academic and business representatives in four major areas: 1) program overview, encompassing curriculum-based activities, assessment methods, and documentation of time spent at the worksite by students; 2) professional development and experiences; 3) business involvement; and 4) results, including measurable student improvement rates such as grades and retention as well as measurable benefits to business partners and the community.

Following is a brief description of each winning program. After this introduction are the three narratives, each written by a program’s consortium, about how the programs were developed and how they came to be award winners. The appendix contains a section on questions to ask before beginning a worksite learning program, a glossary, and a list of URLs for the web sites of the EWSLA recipients and web sites that provide additional information on starting worksite programs.

\(^1\) In 1997, Caterpillar Inc. began to provide funding for the EWSLA, including the cash awards, plaques, and administration of the awards.
STARK COUNTY TECH PREP CONSORTIUM

MEDICAL TECH PREP
CANTON, OHIO

The mission of the Medical Tech Prep program is to provide advanced skill education and training in technology-related medical careers that will result in associate degrees, baccalaureate degrees, two-year certificates, and/or employment. The program fosters competency in occupational, academic, and employability areas through classroom and laboratory instruction and work-based experiences. Students are assigned to different hospital departments in seven five-week rotations. In each department, students observe occupational activities and are responsible for performing tasks that don’t require licensing. Each week students complete journal entries in which they describe the activities observed and the tasks performed and explain the scientific basis for each. At the conclusion of the rotation, students evaluate the associated career in relation to their personal career goals.

PEORIA EDUCATIONAL REGION FOR
EMPLOYMENT AND CAREER TRAINING
MANUFACTURING SKILLED TRADES
WORK-BASED LEARNING
PEORIA, ILLINOIS

The Manufacturing Skilled Trades Work-Based Learning program is a two-year course for eleventh- and twelfth-grade students. Students attend class three hours a day, five days a week. They complete program competencies in an integrated systems technology lab, job shadow skilled trades journeypeople, attend problem-analysis workshops, write reports, and complete design projects and supplemental math assignments. Students have the opportunity to job shadow approximately seventy days of the school year. For each successfully completed year in the program, students receive a college scholarship. This scholarship covers tuition, books, and fees at the community college in an approved curriculum. What
originally was a partnership program with Caterpillar Inc. has now grown to include eleven other companies.

PASCO-HERNANDO COMMUNITY COLLEGE
WORKPLACE LEARNING PROGRAM
PARTNERSHIPS
NEW PORT RICHEY, FLORIDA

The Job Shadow Opportunity program, the Job Post database, and the Internship in Business program make up the Workplace Learning Program Partnerships. This program was created and implemented with a focus on cooperative learning experiences among college administrators and faculty members, college students, and business partners in the community. The Job Shadow Opportunity program allows students to visit business sites to get an overview of the work environment and job tasks involved. The Job Post database gives students access to information about job openings in their areas of interest. The Internship in Business program permits students to have ninety-six-hour work experiences in the community. Approximately seventy business sites are active in the Workplace Learning Program Partnerships.
Introduction

The mission of Stark County Tech Prep Consortium’s Medical Tech Prep program is to provide advanced skill education and training in technology-related medical careers that will result in associate degrees, baccalaureate degrees, two-year certificates, and/or employment. The program was the second established by the Stark County Tech Prep Consortium, which consists of 19 school districts (including comprehensive and associate schools and one joint vocational school); Stark State College of Technology; and representatives of local business, industry, and labor.

In 1993, the consortium conducted a survey to determine employer needs in the healthcare arena for the next five years. The survey was sent to large, mid-size, and small healthcare agencies in the greater Stark County area of northeastern Ohio. Survey results demonstrated that, over the next five years, the greatest number of employees would be needed in the areas of nursing, physical therapy assisting, and occupational therapy assisting. Consequently, those three occupations were chosen as the basis for the consortium’s first Medical Tech Prep program.

The steering committee decided to pilot the program at one school district. After reviewing proposals from a number of districts, a committee made up of representatives from business
and education selected Perry High School as the site. The district felt that the program was needed to provide career education and opportunities to develop career-related skills for students interested in medical careers. The program was able to use a healthcare lab at Perry High School. Additional curriculum-related equipment was purchased, further enhancing the existing lab facility.

Building the Solution

START-UP COMMITTEES AND ADVISORY GROUPS

The program established an advisory committee comprising educators and healthcare representatives to provide guidance through development and operation of the program. This committee meets several times during the year.

When the program was two years old, the advisory committee decided that worksite learning experiences would significantly enhance student learning. Business partners already involved with the program—Massillon Community Hospital (MCH), an acute care hospital, and its subsidiary, Rose Lane Health Center, a long-term care facility and stroke rehabilitation unit—then decided to expand their involvement with the program to serve as the sites for student learning.

FUNDING

Funding for the program was provided primarily by the Perry Local School District. This funding provides teachers, workbooks, lab fees, consumable supplies, and field trips. A $10,000 start-up grant from the Stark County Tech Prep
Consortium assisted with expansion of the laboratory. Curriculum development also was provided by the consortium. The program has received additional grants to support in-school clinical lab enhancement and academic support and to facilitate enrollment expansion. Financial support for the worksite learning component of the program comes entirely from participating employers.

CURRICULUM DEVELOPMENT

The program’s curriculum was developed using the TCP (Tech Prep Competency Profile) process, developed in Ohio in 1993. This systematic process includes local labor market analyses, verification of a draft competency list by business/industry/labor representatives, and curriculum leveling and course of study creation by educators. After the curriculum was developed, secondary and postsecondary educator teams were formed, curriculum pathways and articulation agreements were established, professional development needs were identified, lab layout was determined, and a team action plan was developed.

The goal of the program is to foster development of the following occupational, academic, and employability competencies through classroom and laboratory instruction and work-based experiences in order to prepare students to enter and advance in a changing global workplace.

The goal of the program is to foster development of occupational, academic, and employability competencies through classroom and laboratory instruction and work-based experiences.
The Program

Students began to enter the program in the fall of 1994. Admission is based on GPA, science and English grades, attendance, and faculty recommendation. Students from all consortium school districts may apply to any consortium Tech Prep program tuition-free. One-half of the “seats” in the program are available to students from outside the Perry Local School District.

The Medical Tech Prep program fosters the achievement of competency in the occupational, academic, and employability areas through classroom and laboratory instruction and work-based experiences. The interdisciplinary curriculum is taught in a contextual, integrated style by a team of educators. Included in the program is the 75-hour Nurse Aid Training and Competency Evaluation Program (NATCEP) administered through the Ohio Department of Health, completion of which entitles students to sit for the state nurse aid certification exam.

The consortium believes that having a work experience/mentorship partnership between local healthcare facilities and the school is the most effective way to provide
career education for students. This program provides senior students an opportunity to work with healthcare professionals in a patient care setting to develop job skills and determine career paths. The goals of the program are: 1) to provide opportunities for students to become confident in their choice of a healthcare career through the exploration of health careers in an authentic setting, 2) to facilitate the development of positive habits and attitudes necessary for careers in healthcare through direct experiences in a healthcare environment, and 3) to facilitate the mastery of patient care skills through meaningful experiences at the clinical site.

Seniors in the program have hands-on experiences at MCH and Rose Lane; these experiences are complemented by mentoring from hospital and nursing home professionals. Students come to this experience having studied anatomy and physiology, safety and infection control, and medical and legal issues such as confidentiality of patient information. Career exploration is a primary focus for the students.

Students work in seven different hospital department rotations of five-week duration each, so they are exposed to many different careers, including some that are unfamiliar to them. Based on career interest surveys conducted at the end of the junior year, the program coordinator strives to match worksite learning experiences with student interests. She also answers career-related questions and provides information about educational preparation requirements, income potential, and other pertinent matters. Students are required to sign behavior contracts before beginning their hospital work.

Under the direction of the program coordinator and hospital employee/mentor, students become working members of

The consortium believes that having a work experience/mentorship partnership between local healthcare facilities and the school is the most effective way to provide career education for students.
assigned departments. In each workstation, students observe professionals at work and are responsible for performing specific tasks. In addition, the program coordinator and professional staff mentors delegate tasks for which the students have been trained and/or tasks that do not require licensing. Students learn the overall function of the department as well as the medical terminology unique to each department. Each week students complete journal entries in which they describe an activity they performed or observed and explain its scientific basis. This stimulates the students to be responsible for their learning and to become more aware of the rationale for doing procedures in prescribed ways. At the end of each week, students complete timesheets signed by their clinical mentors. At the conclusion of each rotation, students evaluate the associated career in relation to their goals. By the end of the year they have developed a career plan.

Perry school board approval for the hospital-based senior year work/mentorship experience was granted in 1996. The class of 1997 was the first Medical Tech Prep class to have this yearlong worksite experience. Clinical experiences take place at the 160-bed hospital and the nearby long-term care facility. Students report to the hospital from 7:15 A.M. to 10:30 A.M. on Monday, Wednesday, and Friday. On Tuesday and Thursday, they have 160 minutes of related classroom time for Medical Tech Lab and about 200 minutes of English and communication. Students also have 60 minutes of chemistry daily from 11 A.M. until noon. At the completion of the Medical Tech Prep block, out-of-district students have the afternoon to return to their home schools to take additional academic classes.

Based on career interest surveys conducted at the end of the junior year, the program coordinator strives to match worksite learning experiences with student interests.
Articulation Agreements

The program is designed to articulate with associate degree programs offered at Stark State College of Technology.

Teacher/Instructor/Staff Preparation

Professional development has always been a high priority for the consortium. Topics covered at sessions offered locally and regionally have included (1) teaching and learning styles, (2) characteristics of successful teams, (3) building partnerships with business and industry, (4) recruiting, and (5) establishing mentorships. Collectively, these experiences have significantly strengthened the program.

The consortium offers ongoing professional development activities for school administrators, counselors, and teachers, and MCH has established a training program for staff members involved in student mentoring. These MCH training sessions are conducted each year before students begin the clinical experiences. The purpose is to orient staff members to their mentorship responsibilities, which are outlined in a handbook. The evaluation form, to be completed by the mentor at the end of each student’s rotation, is included in the handbook. The orientation includes a review of the characteristics and developmental stages of teenagers.

Collectively and individually, these training opportunities have greatly improved the quality of the experiences for students. The teacher training has provided teachers with the tools that enable them to use appropriate teaching methodologies and to address different student learning styles. The mentor training has enhanced the ability of the mentors to understand and work with students and to help students see their worksite activities as meaningful learning experiences. Verbal feedback
from mentors indicates a high level of satisfaction with their involvement in the program.

Perry Local school board members and administrators have shown strong support for the program. Several have visited the Tech Prep lab and the hospital to view the students in action.

The mentor training has enhanced the ability of the mentors to help students see their worksite activities as meaningful learning experiences.

Business Involvement

In addition to providing worksite learning experiences for students three days per week, MCH has demonstrated extraordinary commitment to the effort in other ways. The hospital’s volunteer services department assumes responsibility for the success of the program and works with the program coordinator to ensure student success. The director of volunteer services facilitates communication with hospital personnel, provides communication devices, assists in planning inservice meetings for mentors and orientation for students, and establishes personal connections with the high school students. She documents the volunteer hours students contribute to the hospital and recognizes them for their efforts. She also notifies departments of student absences and supervises student behavior. In addition to the student mentorship effort, the hospital’s time contribution of professional staff represents an in-kind contribution to the program of approximately $56,000 per year. MCH also provides space to the program for lecture classes and a patient care room in which students can practice clinical skills.

The business mentors and/or supervisors provide a thorough student orientation to the hospital prior to the first rotation assignment. This includes information on infection control, safety issues, customer service, respect for confidentiality and patient rights, explanation of the students’ responsibilities and
roles in a professional environment, tips for relating to adult mentors, and a tour of the facility. Students also learn how to answer the phone correctly and use equipment such as copiers and fax machines. In addition, MCH provides two-step TB skin tests and drug screen analyses at its own expense.

As part of their mentorship responsibility, hospital staff members plan for appropriate student observation activities, assign student tasks, provide career information, and complete an evaluation of student performance at the end of each rotation. They also serve as classroom speakers. By supporting this project, the hospital hopes to achieve the following objectives: (1) to develop excellence in education, (2) to promote and develop the highest standards of patient care now and in the future, (3) to benefit the community, and (4) to achieve optimum use of community resources. Another important objective of the hospital-based experience is to facilitate student exploration of healthcare careers, including the career ladder concept, i.e., the hierarchy of responsibilities and functions of professionals within careers according to levels of educational preparation and/or experience.

Worksite experience is evaluated through feedback from both students and mentors. Student input is sought throughout the experience as well as at the end of the year, when students complete written evaluations. Student suggestions are evaluated and, where appropriate and feasible, implemented. Student journals are read and evaluated in writing by both the program coordinator and the English teacher, providing continuity between hospital and school experiences. Mentor feedback also is sought throughout the experience and at annual review meetings.

The business mentors and/or supervisors provide a thorough student orientation to the hospital prior to the first rotation assignment.
Maintaining an Exemplary Program

Marketing the Program

While word of mouth is the most effective form of program promotion, Perry administrators continue to share information about the program at an assembly for sophomore students. Students in other districts learn about the program from their guidance counselors. Perry continues to enhance its marketing of the program through the creation of a PowerPoint presentation and a video that will be sent to all Stark County high schools.

Program Evaluation

Annual program reviews are conducted to reexamine the curriculum to keep it current and to identify what is going well in the program and what needs to be improved. Input comes from students, parents, secondary and postsecondary teachers and administrators, counselors, and business and industry representatives. These sessions have ensured continuous improvement of the program.

The program’s first concrete evidence of success was gathered by its science teacher, now retired, who tracked students for two years. Statistics showed that the GPA of all but one student improved (the one student’s GPA remained the same) and attendance records improved. When questioned about their enhanced academic performance, students indicated that their motivation increased because they could see the relationship between what they were doing in class and occupations. Further evidence of success has been the comments of parents, who say that their children can’t stop talking about their Tech Prep experiences.
The class of 1996 didn’t have the hospital-based experience and received only 16 hours of clinical experience. Sixty percent of these students made commitments to health careers; 27 percent entered college with no career focus; and 13 percent didn’t enter college or seek entry-level employment in the healthcare arena. This differs notably from the class of 1997 (the first to have the hospital-based experience), in which nearly 100 percent of graduates made commitments to health careers and college. One student entered the military; the others are in college. Of the class of 1998, all but three graduates are enrolled in college or are working in related fields. The class of 1999 had 20 graduates, 17 of whom were accepted into college programs and majored in a variety of health fields.

The success of the Medical Tech Prep program was a major factor in the consortium’s receiving Ohio’s BEST Practices Award. (“BEST” stands for “Building Excellent Schools for Today and the 21st Century.”) This award was presented in recognition of the consortium’s efforts to develop creative solutions to education challenges and its commitment to improve education opportunities and results for every child in Ohio. Medical Tech Prep was the first Tech Prep program in the state to receive this coveted award.

The success of the program is also evident in its increased popularity. This past year more than 40 students applied for the 22 seats in the program. The Medical Tech Prep program has been so successful that portions of it have been replicated by other consortia in Ohio.
Legal Issues

Students in the program are covered by the board of education’s liability policy when at the clinical sites. Students are required to have auto insurance to be able to drive to the sites. The delegating professionals assume responsibility for the tasks they delegate. Participating professionals can delegate to students any tasks that can be done by an unlicensed person or a nursing assistant.

Conclusion

In summary, the program has many positive things going for it:

• The teachers in the program enjoy working together as a team.

• Students in the program find that learning can be fun and exciting.

• The program’s business partners benefit by the good PR in the community, the volunteer assistance given by students, and by having easy access to a well-educated work force.

• Parents like seeing their sons and daughters become well prepared for college and the workforce.

While the program has demonstrated excellence by both local and national standards, the district feels that the population of students who will pursue postsecondary education to prepare for medical careers is underserved. For this reason, the district plans to offer a second Med Tech class for the 2001–2002 school year. This will be the first such expansion of a Tech Prep program in the Stark County consortium.
MANUFACTURING SKILLED TRADES: INDUSTRIAL ELECTRICIAN, INDUSTRIAL MAINTENANCE MECHANIC, TOOLMAKER

Introduction

Caterpillar Inc., along with many other manufacturing companies, has seen a decline in both the number and the skill level of available industrial skilled trades workers in the Peoria, Illinois, area as well as nationwide, as evidenced by several print sources including *Time Magazine*, January 20, 1997. There was such a shortage of qualified workers that, in an effort to recruit industrial skilled trades workers, Caterpillar Inc. contacted seven major manufacturers—including Boeing, Lockheed, and Pratt Whitney—that were closing plants or downsizing, but there was no response. Caterpillar also ran advertisements in Illinois, Indiana, Iowa, Missouri, and Wisconsin. While the advertisements generated 650 responses, none of the applicants was qualified. These statistics reinforced the need for a work-based learning program in manufacturing skilled trades that would adequately train industrial skilled trades workers, specifically, industrial electricians, industrial maintenance mechanics, and toolmakers.

Faced with intense competition for skilled tradespeople locally and nationally, in 1997 Caterpillar Inc. decided to launch a collaborative, long-term effort to “grow its own” skilled trades
workforce. Caterpillar Inc. partnered with the Peoria Educational Region for Employment and Career Training (P.E.R.F.E.C.T.), Illinois Central College (ICC), and the Central Illinois Education to Careers Partnership (CIETCP) (which includes secondary administrators and educators, postsecondary educators and administrators, businesses, industry, labor, and government agencies) to develop the nationally acclaimed Manufacturing Skilled Trades Work-Based Learning program.

The process used to plan, develop, and implement the Manufacturing Skilled Trades Work-Based Learning program began with the formation of teams of representatives from secondary and postsecondary education, business and industry, labor, and government. This team went through a business project management process funded by Caterpillar Inc. to develop a project charter. The project charter involved developing a description of the end-product(s), determining the scope of the program, establishing project objectives, identifying key stakeholders of the project, and identifying constraints that would impact the approach to the project.

Time lines were developed for implementation. Teams were also established for school-based curriculum, work-based curriculum (OJT), assessment/selection/development, marketing, and articulation.

Building the Solution

P.E.R.F.E.C.T. already had strong partnerships through the CIETCP. The dean of instruction at ICC was one of the cochairs of CIETCP and also served on the Manufacturing Skilled Trades Work-Based Learning program team along with members of the

Faced with intense competition for skilled tradespeople locally and nationally, in 1997 Caterpillar Inc. decided to launch a collaborative, long-term effort to “grow its own” skilled trades workforce.
ICC faculty and staff. Two Education for Employment (EFE) officers as well as the director of the P.E.R.F.E.C.T. EFE and their staffs also served in key roles in CIETCP. Finally, a Caterpillar Inc. representative served as one of the other cochairs of CIETCP along with many Caterpillar employees who served in key roles in the partnership. The Manufacturing Skilled Trades Work-Based Learning program served as an expansion of this partnership and was an opportunity to draw additional manufacturing partners into the CIETCP. From this partnership the following teams evolved.

The **school-based curriculum team** (1) identified the core competencies for preparatory curriculum; (2) designed, developed, and implemented school-based competency-based industrial electrician, maintenance mechanic, and toolmaker curriculum starting at 11th grade and extending through community college to apprenticeship and employment; (3) ensured that instruction occurred in all aspects of the industry; (4) ensured that work-based learning experiences were available to all students; and (5) ensured that work-based learning progressed, included preemployment and employment skills, and was coordinated with school-based learning.

The **work-based curriculum team (OJT)** designed, developed, and implemented an industrial electrician, maintenance mechanic, and toolmaker competency-based curriculum starting at 11th grade and extending through community college to apprenticeship and leading to employment. This included preemployment and employment skills coordinated with school-based learning as well as general workplace skills, skills relevant to a specific industry, and skills relevant to all aspects of the industry. These skills were based on industry standards as well as state and national skill standards.
where appropriate and available. The skills are coordinated by trained, qualified worksite mentors as well as a certified education worksite coordinator. A training agreement was developed to define roles and responsibilities for all parties in the program. Competency-based training plans were also developed for students at the job site.

The assessment/selection/development team (1) ensured that the experience was available to all students; (2) worked with the work-based (OJT) and school-based curriculum teams to develop selection criteria, standards, and processes; and (3) developed an assessment and skill development process and a documentation plan.

The marketing team developed and implemented a plan to give students, parents, and educators a greater awareness of the technical nature and employment outlook and potential of skilled trades careers.

The articulation team is working with the community college and four-year institutions to expand existing articulation programs and develop new articulation programs.

At first these teams met twice a month and convened once a month at a combined-team meeting. Currently the combined-team meeting is held monthly and the individual teams meet on an as-needed basis.

Initial funding for the Manufacturing Skilled Trades Work-Based Learning program consisted of state and federal Tech Prep and School to Work dollars and a special three-year Manufacturing Skilled Trades Work-Based Learning grant of $93,000. Illinois Central College contributed $50,000, the Illinois Central College Foundation contributed $25,000, and the Society of Manufacturing Engineers contributed $10,000. However, the largest monetary investment was made by Caterpillar Inc., which contributed $153,500 at the secondary...
level and $972,000 at the Community College level. Square D and Springfield Electric and Kirby Risk each contributed $50,000. P.E.R.F.E.C.T continually researches funding sources, such as the Peoria Area Community Foundation. School districts in the tri-county region are charged $500 per student enrolled in the program; school districts outside the region are charged $1000 per student. State Vocational Reimbursement dollars generated for students enrolled in the program also go to P.E.R.F.E.C.T. for program expenses.

The curriculum used in the program was developed by Amatrol, Inc., and is supported by an Integrated Systems Technology lab (IST). The school-based learning team researched available curricula and recommended this program. Caterpillar installed and Amatrol, Inc., trained the instructors on the lab equipment and curriculum. Students also receive math instruction from the community college as a part of each rotation.

Articulation is an ongoing process that allows students to make a seamless transition between secondary and postsecondary components. When they enroll at the community college, students receive credit for the technical math taken at the secondary level as a part of the program. Students can have up to seven hours of technical math credit on their transcripts as they begin their postsecondary training.

One hundred administrators, counselors, and faculty members have taken part in the Manufacturing Skilled Trades Work-Based Learning job shadowing program. The educator job shadowing program is designed for educators to experience an overview of the Manufacturing Skilled Trades Work-Based Learning program. Participants receive hands-on modular IST lab activities, tours

Participants receive tours of Peoria area manufacturing facilities and the opportunity to spend part of a day with an industrial electrician, a maintenance mechanic, and a toolmaker.
of Peoria area manufacturing facilities, and the opportunity to spend part of a day with an industrial electrician, a maintenance mechanic, and a toolmaker. Through this hands-on three-to-five-day session, educators gain understanding of what skilled trades occupations entail and the opportunities available to students.

The IST lab is a corporate campus located at the Caterpillar Central Training Facility. Caterpillar Inc. donated the space and purchased and installed the IST lab to train students for skilled trades.

The Program

The Manufacturing Skilled Trades Work-Based Learning program is a 2 + 2 competency-based education and training process. In level 1 of the IST lab, first-year students (juniors) receive instruction in areas of design processes, manufacturing processes, quality assurance, automated material handling, fluid power systems, electrical systems, and mechanical systems. In level 2, second-year students receive advanced competency-based instruction. Both first- and second-year students receive a combination of three hours per day of classroom/lab instruction, math instruction from the community college, and/or specific work-based learning instruction under the supervision of an industrial electrician, maintenance mechanic, or toolmaker journey person. This is set up in four eight-week rotations.

Students attend the IST lab for four weeks, study technical math for two weeks, and, for the remaining two weeks, job shadow (OJT) at the facilities of business partners. First-year students spend two weeks with each of the skilled trades occupations during the two-week OJT rotation to be sure they understand the different jobs.

Students attend the IST lab for four weeks, study technical math for two weeks, and, for the remaining two weeks, job shadow (OJT) at the facilities of business partners.
Second-year students may specialize in a trade and then explore that trade at the facilities of different business partners.

In the first year of the program (spring semester 1998), 28 students were enrolled in a pilot program for one semester. In the second year, 49 students enrolled; in the third year, 58 students enrolled; and for 2000–2001, 51 students are enrolled. Twenty-one seniors graduated May 2000 and registered for classes in the skilled trades programs at ICC for 2000–2001. Seven students graduated from the skilled trades programs at ICC in May 2000. They are employed by area business partners as they wait for the apprenticeship training to begin.

Student assessment for the eight-week rotation is based 60 percent on the IST lab, 20 percent on technical math, and 20 percent on the job shadowing. Students go through one complete rotation during a grading period.

Twenty-eight area high schools are eligible to send students to the program. To be admitted to the program, students must have 2.0 cumulative grade point averages with C averages in algebra I and, preferably, geometry (or they must be enrolled in geometry for the coming school year). Students must also obtain three faculty recommendations and be free of disciplinary or attendance problems. If students meet the above criteria, they are eligible to begin the selection process, which involves a test of learning abilities (TLA) and drug screening. Those in compliance with the TLA and drug screening are then interviewed using a behavioral interview process. Students who pass the interview process are eligible to enter the program. Students entering the program must sign training agreements that describe the rules, attendance policy, and the responsibilities and expectations of all parties.

Response to the program has been exceptional—22 of the 28 high schools are sending students. Eighteen of the 20 juniors from 1999–2000 are returning for their senior year. Thirty-four first-year students have been recruited and accepted for the 2000–2001 school year,
and the program has three new business partners. Business partners recognize that the program is creating a pool of better-qualified potential employees. The program has brought recognition of industrial manufacturing as a worthwhile career path and has heightened community awareness of manufacturing skilled trades careers. As a result, ICC’s enrollment in skilled trades associate degree programs has increased.

Maintaining an Exemplary Program

Communication among partners is crucial to maintaining an exemplary program. Regular meetings offer a venue for planning and problem solving. A program coordinator is necessary for continuous evaluation and improvement to expand and sustain the program.

The Manufacturing Skilled Trades Work-Based Learning program coordinator, in conjunction with the three EFEs, coordinates marketing, the 28 school districts, and the business partners. Marketing efforts are continuously evaluated for effectiveness. Marketing to middle school educators, students, and parents is a priority. Skilled Trades summer camps for students in grades 8–11 will be continued. Marketing tools include job shadowing for educators, a web site (www.getintoskilledtrades.com), a parent-student handbook that describes the program’s discipline and attendance policies, and other materials on a web-based guidebook.

Funding for these marketing strategies is provided by business partners and through research on alternative funding sources.

Students leaving their home schools to participate do so in compliance with their home school districts’ regulations and are covered by their schools’ insurance and the business partner policies. Students job shadow while at the manufacturing sites and earn ICC tuition.
Conclusion

The Manufacturing Skilled Trades Work-Based Learning program provides rigorous education in math, science, communication, and computers. For every semester of high school successfully completed, participating students can receive one semester’s tuition toward an associate degree from ICC in industrial electrical technology, machine tool technology, and/or maintenance mechanic technology. Upon completion of the associate degree, students are accepted into a two-year apprenticeship program or entry-level employment or are ready to pursue four-year degrees in manufacturing technology or engineering.

Partnerships and collaborations such as this benefit communities, as well as business and industry, through relevant, competency-based curricula, enhanced school performance, reduced employer training costs, lower employment turnover, and a ready-to-hire, technically skilled workforce.

The program increases career awareness and prepares students for careers in skilled trades, helps students see the relevance of their school work by connecting the classroom to manufacturing, provides students with a head start in the manufacturing skilled trades industry, and meets industry needs for skilled trades workers.

Because they attract and prepare students for future employment, programs such as Manufacturing Skilled Trades Work-Based Learning improve communities and enhance the lives of individuals. The skills acquired are based on industry standards. Consequently, students who complete these programs are capable of earning “family wage” incomes in a variety of occupations, bringing them, and their communities, economic stability and flexibility.
Program Awards

The Manufacturing Skilled Trades Work-Based Learning program has gained national recognition as an exemplary 2 + 2 model. Awards and recognition include:

- National Tech Prep Network Exemplary Worksite Learning Award
- Illinois Community College Trustee Association (ICCTA) Business/Industry Partnership Award
- Connections 99 Award
- Nominated for National Alliance of Business 1999 Distinguished Performance Awards
- Connection 2000 Award—Explore High Tech Careers—Summer Program for All Learners in Middle and Secondary School as well as a Specific Program Designed for Females to Explore Nontraditional Careers
- 2000 Business/Education Partnership Honorable Mention
- Outstanding Business and Industry Contribution Award by the National Association of State Directors of Vocational Technical Education Consortium for Manufacturing Skilled Trades in Washington, D.C.
- 2000 Employment Management Association Foundation School/Business Partnership Award

Outlook

The future is bright for today’s students in the program and for those in the future. As the program expands to all 28 high schools, the 96 student stations will be fully implemented. The program’s business partners are working together to increase the number of corporate sponsors and partners. Educators and business partners continually research state, federal, and private alternative funding sources. Everyone realizes that an expanded pool of qualified workers is a “win-win” situation for all.
WORKPLACE LEARNING PROGRAM PARTNERSHIPS

Introduction

During a Pasco-Hernando Community College (PHCC) self-study, it became clear that the division of business programs could benefit from a workplace learning component. Aware of a growing emphasis in Tech Prep and School-to-Work programs on workplace skills, and using SCANS competencies as a guideline, the college began putting together a program that not only would address the needs of the business degree students, but could expand throughout the college into all degree programs.

Building the Solution

The position of workplace learning/career placement specialist (now called placement center coordinator) was created to develop what in essence would be a completely new program and department. Through initial funding provided through a School-to-Work grant, the Workplace Learning Program Partnerships program was created. The program consists of three main components, the Job Shadow Opportunity, the Job Post database, and the Internship in Business. Each component was created and implemented with a focus on cooperative learning experiences among college administrators, college students, and
business partners in the community. College faculty members, administrators, network staff members, and library staff members gave support to the new workplace learning/career placement specialist’s ideas for implementation. Additionally, business partners were instrumental in helping to set parameters for the internship portion of the program.

A handbook and a PowerPoint presentation were created to outline the goals of each program component. The ideas were presented to Rotary Clubs, Kiwanis Clubs, the Manufacturer’s Association, the local chamber of commerce, and other community organizations. With the support of representatives of the college and the business community, the new programs took shape.

The Program

Certain objectives were essential to the formation of a meaningful workforce program:

OBJECTIVES OF PRACTICE

1. To add meaningful work-based experiences to curricula
2. To enhance opportunities for students to network in their fields of interest
3. To include business partners in the development of meaningful business curricula
4. To increase opportunities for student employment in Pasco and Hernando Counties
5. To provide opportunities for students to learn site-specific business skills
6. To form a cooperative alignment between the college and the business community for the purpose of enhancing curricula as they relate to the needs of business
WAYS IN WHICH OBJECTIVES HAVE BEEN ACHIEVED

1. Students learn workplace competencies and skills in a work setting. Students have opportunities to either observe (job shadow) or learn and practice job-specific skills (internship).
2. Students meet business leaders and make meaningful contacts through job shadowing and internship experiences.
3. Business partners assist in developing meaningful learning objectives for interns and are invited to participate in other aspects of curriculum development.
4. Business partners have the opportunity to list job openings on the Job Post database; students have the opportunity to review and choose appropriate job openings and internships and to contact employers directly for interviews.
5. Students have the opportunity to experience meaningful work skills in real work settings.
6. Business partners are invited to contribute their ideas and concerns as part of the college curriculum-development team.

The Job Shadow Opportunity program allows students to visit business sites for four to eight hours. This opportunity gives students overviews of work environments and allows them to explore tasks performed in work settings of their choice. Job shadowing opportunities are accessed either through direct contact with the placement center or, more often, through course instructors.

A faculty packet is supplied to instructors who want to offer the job shadow opportunity as part of their courses or want to act as student sponsors. The packet includes a letter of introduction and an evaluation form for the business partner to return to the
instructor. This form provides valuable feedback to the instructor and to the student. Many instructors choose to incorporate this opportunity into their courses as individual projects or to provide source material for writing activities (not necessarily graded activities).

The program offers the student a real-world opportunity to shadow a career of interest with the support of a professional at the college. Students who are unsure of their career paths often find this enlightening and return to the classroom more motivated to complete their degrees.

The Job Post database is a centralized, student-accessible source of information on job openings in particular areas of interest. Initially accessed through PHCC’s intercampus network, the database is now accessible via the World Wide Web, making it possible for students and employers to log on from anywhere using personal identification numbers. Students can search the database for full- and part-time job openings, summer jobs, and internships. Business partners can search for and review the online resumes of students who may qualify for positions with their companies.

The Internship in Business allows students to have 96-hour work experiences in the community. This opportunity includes an academic component that balances the worksite component. The internship course offers students structured work-based experiences that help them to enhance their workplace skills through supervised hands-on activities related to their career objectives. Internships are governed by written agreements that describe supervisory responsibilities and student assignments. Regular meetings are held between the instructor and placement center coordinator.

Prerequisites to the Internship in Business are as follows: 15 college-level credits at PHCC; at least 12 credits in college-level business courses with 2.0 minimum GPA in all college-level
business courses. To be admitted to the program, a student must submit an intern request form to the placement center coordinator. The coordinator reviews the student’s academic record to determine eligibility and sends the student a letter of eligibility or ineligibility. If eligible, the student registers for the internship course and attends a workshop designed to help the student prepare for the internship position interview.

Workshops are held frequently at each campus location. Through videoconferencing, the workshops are available to multiple sites simultaneously. Each student must attend a workshop, which consists of a welcome to the program, an introduction to the faculty supervisor, and presentations on interviewing techniques and the essentials of resume writing. Business partners are invited to make brief presentations about what they expect when interviewing a candidate for an internship position and a “real” job.

The student searches the web-accessible database for internship sites of interest, calls the business(es) of choice to schedule an interview, and ultimately secures an offer to join a business as an intern. Once an internship site is secured, the student, participating faculty member, and business supervisor create a formal learning agreement of behavioral objectives. This agreement serves as the course syllabus and the basis for evaluation. Students are evaluated at least twice during the term of internship, and a final grade of pass or fail is determined from the performance ratings recorded on the learning agreement.

Business supervisors also attend workshops to learn about their responsibilities and to receive training in mentoring student interns. The workshops give the supervisors the opportunity to meet representatives of other businesses involved in the program; veteran supervisors are frequently in attendance, offering support to newcomers.
Support for the overall program can also be found in the reserve materials available at each campus library. A variety of materials, including videos, reference manuals, workshop materials, programmed workbooks, pamphlets, and books, offer extensive career information, guidance on career-specific issues, and assistance with interviewing and resume writing. The business partner is issued a temporary library card that can be used to check out materials. Some materials are used as references for academic assignments, some are required reading, and others are useful in assisting particular students with areas that pertain specifically to the internship.

Maintaining an Exemplary Program

We consider the business supervisor, the faculty supervisor, and the student partners in the internship process. They consult with one another frequently to assess progress and, where necessary, to propose intervention strategies. The library reserve materials are useful resources that facilitate this process.

The program is a team effort. Initially, all participants were volunteers. As the program attained success, the college made the Internship in Business a required component of several degree programs and identified it as a worthwhile elective in several others. The division of business, student services, the library, the faculty, and the networking staff have all been involved in making the Workplace Learning Partnerships program a success.

Additionally, business partners and the chamber of commerce, along with civic organizations such as the Rotary Club, have been and continue to be involved in the organization.
and implementation of each initiative. Since the program details were put in place, the central priority of the placement center coordinator has been to maintain relationships with the faculty, students, and business community. As a result of community involvement, PHCC was named the host site of a large county event, Business Development Week 2000. This event, in turn, attracts community members to the college, increasing the college’s visibility within its service area.

The extent of student, faculty, and business interest in cooperative learning programs has been astounding. We are meeting a real need with all of the programs in operation. Due to positive response and support, we are looking for ways to expand and enhance existing programs into other departments. An unexpected benefit has been an increase in local media coverage. All partners in this venture are receiving recognition for accomplishments and service. We couldn’t be more pleased, yet we are hoping for even more innovations in the future.

The extent of student, faculty, and business interest in cooperative learning programs has been astounding.

Conclusion and Outlook

As successful students emerge from the program each term, they become inspirations to new students. The positive mentoring that develops between the student and the business supervisor creates a lasting impression for both participants. Discussions begin to center around real future plans rather than disconnected and random hopes for the future. These newly inspired students share their experiences with other students, creating energy within the student body that brings motivation and renewed commitment to the college experience.
Awards

- Florida Association of Community College Excellence in Curriculum and Instruction Award, 1998
- National Tech Prep Exemplary Worksite Learning Award, 2000
- Rotary Club Vocational Service and Excellence Award, 2000
APPENDIX

What to Ask Yourself First

The concepts included in this section are provided to prompt you to think about what is most important when beginning a new program. Take time to consider what makes a program strong and why students would be interested in participating. Think about how students can gain experience from completing the program. Consider whether you have included components that are beneficial to everyone involved—students, teachers, and employers.

Basic areas such as funding, legal issues, and staffing must be investigated before the development phase of a new program can begin. The concepts and questions included here highlight the importance of addressing those issues and, in so doing, provide steps toward the implementation of a new program.

Consider the problem that a new program should address.

What is the need for starting a new program? Has business expressed the need for a more qualified workforce? Do students need to be challenged beyond merely observing or working at a job site? What student population would be included? Everyone? Are businesses available that would support a new program? Is your faculty prepared and, if so, willing to help? As a school representative, are you prepared to present Tech Prep and School-to-Work concepts to business representatives?
Funding is an issue that must be considered prior to any planning activities.

How will your school obtain funding for the start-up and maintenance costs of a new program? Consider whether local businesses would contribute to the program. Be prepared to explain how they can benefit from being part of the program. (Remind them, for instance, that the students they are willing to train today will be qualified to serve them well as employees in the future.) Are on-campus facilities available and ready to be used? If not, consider how this will affect the start of a new program. What new equipment must be purchased? Will staff training be needed? Is local and/or state funding available? Is there a staff member who is familiar with locating funding opportunities and writing grant proposals for those funds?

Consider what staff will be needed to help brainstorm, develop curricula, and inform students.

In considering the most appropriate staff to recruit, determine how your new program will be structured and the demands it will make on the teachers involved. The teachers selected must be willing to work long hours to develop curricula and to meet with other teachers for planning. The staff must also be flexible, creative, and willing to try new teaching methodologies and to teach with new learning tools.

Consider whether the teachers have any other work experience that might contribute to course development and teaching strategies. Do these teachers have business contacts from whom they might receive outside training?

Will business representatives come into the classroom to teach? If so, consider how these outside teachers might be selected. What requirements (e.g., state certification) will they have to meet to be able to spend time in the classroom?

Counselors play a key role in the success of a new program as well. They must be informed about all aspects of the program so students are informed and get the opportunity to enroll. A sound marketing plan depends on counselors being well
supplied with up-to-date information on the program. By word of mouth, they can help students take an interest in new program opportunities.

The organization of an advisory committee is strongly recommended to help in decision making; it can be beneficial during the organization and development phases.

The people who make up the advisory committee should represent varied backgrounds; diversity on the committee contributes to balance in decision making. Thus, it is a good idea to appoint a heterogeneous group made up of business representatives, teachers, administrators, counselors, students, and parents. Does your school already have an advisory committee with members from the community whose services could be used? Consider the criteria that will be used to select members from the community to sit on this committee. Also consider the goals and philosophies of the program; make sure these ideas are made clear to each member. In selecting your committee, consider how much time members will be able to devote to their responsibilities. Also, think about what their responsibilities will be. How much authority will members be given? How often will the group meet?

After working through structural issues, consider whether enrollment in the new program will be open to all students or limited to students who meet certain requirements.

Think about generally recognized characteristics of a good student, such as having good attendance, earning good grades, and being on track for high school graduation. Now, consider whether these criteria will be used to determine whether or not a student is accepted into your program. Do these characteristics fit the student population you work with? What are the needs and abilities of a typical student in your school? This is an area in which the advisory committee can provide advice concerning what they consider important characteristics. In developing
student acceptance and performance criteria, the advisory committee helps counselors select students for and introduce students to the program. How early will students begin applying for places in the program (i.e., end of school year for the next school year, midyear for the next year)? Think of ways to recruit students into the program. How will you pique a student’s interest about the program? Through counselors? Teachers? Flyers around school?

One of the most important steps in program development is determining which curriculum to use: Will existing materials be used or will new ones be developed?

An ideal time to discuss curriculum issues is when considering which staff members to involve. The staff will play an important part in selecting an existing curriculum or writing new materials. Think about whether the new staff members will be motivated to take on an endeavor like writing a curriculum that meets the needs of the new program. In deciding curriculum issues, consider how best to serve the students in the program. How will students react to a hands-on, project-based instructional approach? Will they become more motivated through the interaction of in-class demonstrations and group learning? Having considered that, think about what curriculum will meet students’ needs. When organizing a new program, some educators pull concepts from various sources. For example, in the past, educators have written lesson plans using concepts from existing materials (e.g., concepts from a physical science course already in use) and incorporated those ideas into new materials (e.g., CORD’s Applications in Biology/Chemistry). Whatever the approach taken by your school, make sure you allow enough time for the teachers to develop lesson plans.
Consider legal and liability issues and how they must be addressed prior to the start of a new program, especially if the program is an apprenticeship and/or involves worksite learning activities.

Any time a student for whom the school is responsible is taken out of the classroom and placed in a workplace, many legal and liability issues must be addressed. Who is responsible for the student at the worksite? If a student is injured at the worksite, who is liable? What kind of equipment will the student be working with or around, and how does that affect liability issues? Consult legal representatives and members of the advisory committee on issues such as students driving to the worksite or being bused during school hours. What age-related restrictions are placed on what a student can experience while at the worksite? What liabilities does a business face by allowing students to observe or work in its facility? States differ in what they will and will not allow a student to do at the worksite. For more information on work restrictions, visit the U. S. Department of Labor’s web site (http://www.dol.gov).

Glossary

This glossary provides definitions of key terms used in this report. Please note that the definitions may not match exactly the terminology as it is used in your consortium or partnership.

Applied academics

The presentation of subject matter in a way that integrates a particular academic discipline (such as mathematics, science, or English) with workforce applications (hands-on laboratories dealing with practical equipment and devices)

Articulation

A process of linking two or more educational systems in a community to help students make a smooth transition from one
level to another without experiencing delays, duplication of courses, or loss of credit

Types of articulation:

2+2—Two years of high school plus two years of postsecondary education
4+2—Four years of high school and the first two years of postsecondary education
4+2+2—Four years of high school, the first two years of postsecondary education at a two-year college, and two years at a four-year college or university

Consortium

A stakeholder group of education agencies and organizations brought together for the development of applied curricula

Contextual learning

The instructional approach, underlying Tech Prep, that states that learning occurs best when students (learners) process new information or knowledge in such a way that it makes sense to them in their own frame of reference. This approach to learning and teaching assumes that the mind naturally seeks meaning in context—that is, the person’s environment—and that it does so through searching for relationships that make sense and appear useful.

Cooperative education

An approach that involves a student’s working for a single employer, usually for pay, under a defined agreement with the school. It can relate closely to the occupational aspects of the student’s educational program. The work experience often lasts for months in a schedule that alternates worksite and school-based learning.

Dual system

Workforce training (youth apprenticeship), commonly found in German school systems, in which classroom instruction is combined with hands-on vocational training
Internship
A flexible type of worksite learning that can involve varying arrangements with an employer. Its main goal is to give students and/or teachers practical experience in a specific field. An internship may be paid or unpaid, and can often last six or more weeks.

Job shadowing
A practice that enables a student to explore a job or career area in detail for the purpose of helping the student choose a career and course of study. Job shadowing should occur in the eighth or ninth grade and can last as little as two hours or as long as two weeks at one workplace. A job shadowing experience consists of one or more students following and closely observing a worker as he or she goes about tasks at the worksite.

School-to-Work
School-to-Work Opportunities Act programs must include integrated school-based and work-based learning that integrates academic and occupational learning and links between secondary and postsecondary education; the opportunity for participating students to complete a career major; the provision of a strong experience in and understanding of all aspects of the industry a student is preparing to enter; and equal access for students to a full range of program components and related activities, such as recruitment, enrollment, and placement activities.

Tech Prep
A sequence of study beginning in high school and continuing through at least two years of postsecondary occupational education. The program parallels the college prep course of study and presents an alternative to the “minimum requirement diploma.” A Tech Prep curriculum is built on a foundation of applied academics, prepares students for high-skill technical occupations, and allows either direct entry into the workplace.
after high school graduation or continuation of study that leads to an associate degree from a two-year college.

Youth apprenticeship

A relatively formal worksite learning program in which employers agree to help develop students’ skills in technical areas and in related mathematics, science, communication, and problem solving. The students “learn by doing” in the workplace with the help of mentors. Qualified students receive recognized occupational credentials when they complete their programs.

Web Sites

This section lists URLs for web sites that provide additional information on starting a program.

Helpful Information for Worksite Programs

- U.S. Department of Education
 http://www.ed.gov
- U.S. Department of Labor
 http://www.dol.gov
- Funding Information
 http://www.ed.gov/funding.html
- Laws and Liabilities
 http://www.state.sd.us/state/executive/dol/dlm/kidswork.htm
- Secretary’s Commission on Achieving Necessary Skills (SCANS)
 http://pueblo.pc.maricopa.edu/MariMUSE/SCANS/SCANS.html
- School to Work
 http://www.stw.ed.gov
- Tech Prep
 http://www.cord.org
 http://vocserve.berkeley.edu/summaries/714sum.html
RELATED SITES

National Skill Standards
http://www.nssb.org

EWSLA RECIPIENTS ON THE WEB

Capital Area Training Foundation
http://catf.esc13.tenet.edu

Inland-Desert Tech Prep Consortium
http://www.rialto.k12.ca.us/rhs/intern.htm

Miami Valley Career Technology Center
http://www.mvctc.com

Northwest Suburban Education to Careers Partnership
http://www.ed2careers.com

Oakland County Tech Prep Consortium
www.oakland.k12.mi.us

Peoria Educational Region for Employment and Career Training
http://peoria.k12.il.us/perfect

Stark County Tech Prep Consortium
http://www.stark.cc.oh.us

Western Wisconsin School-to-Work
http://www.western.tec.wi.us
Order Form

Item code EREWLA-04

Please send __________ booklets

Product Total __________

1–24 at $6.00 ea.
25–49 at $3.50 ea.
50–99 at $3.00 ea.
100 or more at $2.75 ea.

Add 8% for shipping and
handling ($5 minimum)

Subtotal __________

Texas customers add 8.25%
sales tax if applicable

Total __________

Name ________________________________ _______________________

Title ________________________________ _______________________

Organization ________________________________ __________________

Phone ________________________________ _______________________

Street Address ________________________________ _________________

City _______________________ State ________ Zip _______________

Payment Method

☐ Purchase Order: Number

☐ Credit Card (circle one):
 MasterCard American Express VISA Discover

Account Number _____________________ Expiration Date ___________

Signature ________________________________ _____________________

Rush orders are available on request.
Phone orders accepted with credit card only. Call 800-231-3015.

Orders may be faxed to 254-776-3906 or mailed to
 CCI Publishing
 P.O. Box 21206
 Waco, TX 76702-1206